Enabling CO2 Reuse Value Chains

Contents

- Overview
- 2. Source classification
- 3. Capture and Treatment
- 4. Transport
- Tipping point analysis
- 6. Synergies and Trade-offs
- 7. Activities in related sub-projects TUB

The "enCO₂re" Programme

- □ enCO₂re: "enabling CO₂ reuse"
 - Climate-KIC Flagship Programme (2014-2017)
 - Project Coordinator: Covestro
 - Organized in discrete Projects (formerly Activity Lines)
- Project 1. Value Chain Analysis

Imperial College LABORELEC London

Building the value chain

Various Alternative Configurations...

Large scale low purity stream

Small scale high purity stream

Simple gas compression

Amine absorption

Oxyfuel combustion

Pipelines

Trucks

Tanker

CO₂ Sources

Table 1. Sources Classification Matrix

	High Level (>90%)	Moderate Level (20%-90%)	Low Level (<20%)
Small Scale (<0.1 Mtpa)	Fermentation Biogas Upgrading Facilities		
Medium Scale (0.1-0.5Mtpa)	Ethylene Oxide Plant Syngas Production Ethanol Plant Methanol Plant	Cement Production Kiln Flue Gas Scrubbing	Biomass Power Plant Fluid Catalytic Cracking Aluminium Production Textile Industry Glass Industry Waste Incineration
Large Scale (≥0.5Mtpa)	Ammonia Synthesis Hydrogen Production Natural Gas Sweetening Oxy-firing Process	Blast Furnace Oxygen Blast Furnace	Oil, Coal and Natural Gas Power Plants Oil Refinery Iron-Steel Mill Pulp & Paper Mill

CO₂ Capture & Treatment

Table 2. Overview of CO₂ capture technologies applicability

		2 1		_		•					
		Post Combustion	1		Pre Con	nbustion	Other				
CO ₂ Source	Chemical Absorption	Solid Sorbents	Membranes	Chemical Absorption	Physical Absorption	Solid Sorbents	Membranes	Oxy fuel combustion	Chemical Looping Combustion	Chemical Looping Reforming	
				Power Plants							
Steam Turbine	***		*					*			
Gas Turbine	***		*					*	*	*	
IGCC	**	*	*		***		*				
NGCC	**	*	*		**		*				
				Ind	lustrial Process	es					
Natural Gas Processing				***	***	**	***				
Ammonia Production				***	**	**	**				
Biogas Production				**	*						
Cement Production	**	*						*			
Steel Production	***							*			

Note: $\star \star \star$ represent the preferable commercially available options, $\star \star$ represent all other commercially available options and \star represents promising alternatives which are still in the R&D phase.

CO₂ Capture Cost

□ Indicative cost curves, based on literature review, for the most important CO_2 sources and preferably commercially available options ($\star\star\star$ in the previous table).

Figure 1. Capture cost for (a) high purity source input purity >95%) and (b) cement industry using post combustion MEA capture

CO₂ Transport

Figure 2. Short distance CO_2 transportation using onshore pipelines

Figure 3. Transportation cost for various options for medium and long distances

Tipping Point Analysis

 By combining the capture and transportation cost, the economic tipping points have been calculated

Table 3. Capture and transportation cost (\leq /tCO₂ captured) as a function of the total mass flow (MtCO₂/yr) and the distance covered, for short distances (0-100 km) using onshore pipelines for a high purity source

		Distance Covered (km)																
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.5	2	2.5	3	10	50	100
	0.01	23.1	26.4	28.3	29.6	30.7	31.5	32.2	32.9	33.4	33.9	35.8	37.1	38.2	39.0	44.7	52.2	55.5
	0.02	19.9	23.1	25.0	26.4	27.4	28.3	29.0	29.6	30.2	30.7	32.6	33.9	35.0	35.8	41.4	49.0	52.2
	0.03	18.0	21.2	23.1	24.5	25.5	26.4	27.1	27.7	28.3	28.8	30.7	32.0	33.1	33.9	39.6	47.1	50.3
	0.04	16.7	19.9	21.8	23.1	24.2	25.0	25.8	26.4	26.9	27.4	29.3	30.7	31.7	32.6	38.2	45.7	49.0
	0.05	15.6	18.9	20.8	22.1	23.1	24.0	24.7	25.3	25.9	26.4	28.3	29.6	30.7	31.5	37.2	44.7	47.9
Z.	0.06	14.8	18.0	19.9	21.2	22.3	23.1	23.9	24.5	25.0	25.5	27.4	28.8	29.8	30.7	36.3	43.8	47.1
2/2	0.07	14.0	17.3	19.2	20.5	21.6	22.4	23.1	23.8	24.3	24.8	26.7	28.1	29.1	30.0	35.6	43.1	46.4
(MtCO2	0.08	13.4	16.7	18.6	19.9	20.9	21.8	22.5	23.1	23.7	24.2	26.1	27.4	28.5	29.3	35.0	42.5	45.7
Ž	0.09	12.9	16.1	18.0	19.4	20.4	21.3	22.0	22.6	23.2	23.6	25.5	26.9	27.9	28.8	34.4	42.0	45.2
Flow	0.1	12.4	15.6	17.5	18.9	19.9	20.8	21.5	22.1	22.7	23.2	25.0	26.4	27.4	28.3	33.9	41.5	44.7
	0.2	9.1	12.4	14.3	15.6	16.7	17.5	18.2	18.9	19.4	19.9	21.8	23.2	24.2	25.1	30.7	38.2	41.5
Mass	0.3	7.2	10.5	12.4	13.7	14.8	15.6	16.4	17.0	17.5	18.0	19.9	21.3	22.3	23.2	28.8	36.3	39.6
	0.4	5.9	9.1	11.0	12.4	13.4	14.3	15.0	15.6	16.2	16.7	18.6	19.9	21.0	21.8	27.5	35.0	38.2
Total	0.5	4.9	8.1	10.0	11.3	12.4	13.2	14.0	14.6	15.1	15.6	17.5	18.9	19.9	20.8	26.4	33.9	37.2
ĭ	0.6	4.0	7.3	9.1	10.5	11.5	12.4	13.1	13.7	14.3	14.8	16.7	18.0	19.1	19.9	25.6	33.1	36.3
	0.7	3.3	6.5	8.4	9.8	10.8	11.7	12.4	13.0	13.6	14.1	16.0	17.3	18.4	19.2	24.8	32.4	35.6
	0.8	2.7	5.9	7.8	9.2	10.2	11.0	11.8	12.4	12.9	13.4	15.3	16.7	17.7	18.6	24.2	31.7	35.0
	0.9	2.1	5.4	7.3	8.6	9.6	10.5	11.2	11.8	12.4	12.9	14.8	16.1	17.2	18.0	23.7	31.2	34.4
	1	1.6	4.9	6.8	8.1	9.2	10.0	10.7	11.4	11.9	12.4	14.3	15.6	16.7	17.5	23.2	30.7	34.0
	2	0.0	1.6	3.5	4.9	5.9	6.8	7.5	8.1	8.7	9.2	11.1	12.4	13.4	14.3	19.9	27.5	30.7

Total Profit for a CO₂ source

- □ The total profit for each CO₂ source is calculated as: Total Profit = CO₂ Price + Carbon Tax - Capture and Transportation Cost
- Where:
 - □ CO₂ Price is the CO₂ commercial selling price
 - Carbon Tax is the price level of tradable emissions certificates;
 - Capture and Transportation Cost is the cost related to the corresponding stages of the chain
- Also, 15% is considered the lowest acceptable margin for a potential investment by industry.

What is the radius of search?

Potential Synergies

- Are there nearby sources that could act as an add-on and reduce the overall cost?
 - A small industrial plant / brewery (≈0.1 Mtpa)?
 - Another high purity source (≈0.3 Mtpa)?
 - A large power plant (≈0.8 Mtpa)?

		Distance Covered (km)																
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.5	2	2.5	3	10	50	100
	0.1	12.4	15.6	17.5	18.9	19.9	20.8	21.5	22.1	22.7	23.2	25.0	26.4	27.4	28.3	33.9	41.5	44.7
اخ	0.2	9.1	12.4	14.3	15.6	16.7	17.5	18.2	18.9	19.4	19.9	21.8	23.2	24.2	25.1	30.7	38.2	41.5
05	0.3	7.2	10.5	12.4	13.7	14.8	15.6	16.4	17.0	17.5	18.0	19.9	21.3	22.3	23.2	28.8	36.3	39.6
(Mtco.	0.4	5.9	9.1	11.0	12.4	13.4	14.3	15.0	15.6	16.2	16.7	18.6	19.9	21.0	21.8	27.5	35.0	38.2
٤	0.5	4.9	8.1	10.0	11.3	12.4	13.2	14.0	14.6	15.1	15.6	17.5	18.9	19.9	20.8	26.4	33.9	37.2
<u>8</u>	0.6	4.0	7.3	9.1	10.5	11.5	12.4	13.1	13.7	14.3	14.8	16.7	18.0	19.1	19.9	25.6	33.1	36.3
SS FI	0.7	3.3	6.5	8.4	9.8	10.8	11.7	12.4	13.0	13.6	14.1	16.0	17.3	18.4	19.2	24.8	32.4	35.6
Mas	0.8	2.7	5.9	7.8	9.2	10.2	11.0	11.8	12.4	12.9	13.4	15.3	16.7	17.7	18.6	24.2	31.7	35.0
	0.9	2.1	5.4	7.3	8.6	9.6	10.5	11.2	11.8	12.4	12.9	14.8	16.1	17.2	18.0	23.7	31.2	34.4
otal	1	1.6	4.9	6.8	8.1	9.2	10.0	10.7	11.4	11.9	12.4	14.3	15.6	16.7	17.5	23.2	30.7	34.0
	2	0.0	1.6	3.5	4.9	5.9	6.8	7.5	8.1	8.7	9.2	11.1	12.4	13.4	14.3	19.9	27.5	30.7

Potential Synergies

Considerations and Trade-offs

- Important Assumption
 - The CO₂ source is the sole responsible for covering all the costs related to capture, purification and transportation technologies
- More viable business models can be developed...
 - □ If costs can be shared among value chain participants.
 - □ If <u>case-specific characteristics</u> are taken into account (e.g. existing transportation infrastructure)
 - Such an analysis can only be performed on a case by case level, embedded in its socio-economic context

Current state of CO₂ utilisation

Current state of CO₂ utilisation – in TRL stages

Other

Current state of CO₂ utilisation – in start-up activities

Total number of start-ups identified

Europe

USA + Canada

25

Current state of CO₂ utilisation – in valleys of death

Process	Technol	ogy R	esearch	Technology D	Development	Man	ufacturing	Rollout (project finance)		
Activity	Basic R&D	Ар	plied R&D	Den	nonstration	Ma	rket Developmei (Scale-up)	nt	Commercial Diffusion	
Funding Source	Government and University Labs		Angel	Technology Valley of Death	Venture Cap	oital	Commercialization Valley of Death		Private Equity	

CO₂ Utilisation Start-up Concentration in study

Thank you

Dr. Arturo Castillo Castillo +44-(0)20-7594 7312

a.castillo@imperial.ac.uk